Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2304832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37669645

RESUMO

Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs.

2.
Nat Commun ; 14(1): 2506, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130858

RESUMO

Luminescent metal-organic frameworks are an emerging class of optical sensors, able to capture and detect toxic gases. Herein, we report the incorporation of synergistic binding sites in MOF-808 through post-synthetic modification with copper for optical sensing of NO2 at remarkably low concentrations. Computational modelling and advanced synchrotron characterization tools are applied to elucidate the atomic structure of the copper sites. The excellent performance of Cu-MOF-808 is explained by the synergistic effect between the hydroxo/aquo-terminated Zr6O8 clusters and the copper-hydroxo single sites, where NO2 is adsorbed through combined dispersive- and metal-bonding interactions.

3.
Angew Chem Int Ed Engl ; 61(43): e202211848, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36055971

RESUMO

Encapsulating ultrasmall Cu nanoparticles inside Zr-MOFs to form core-shell architecture is very challenging but of interest for CO2 reduction. We report for the first time the incorporation of ultrasmall Cu NCs into a series of benchmark Zr-MOFs, without Cu NCs aggregation, via a scalable room temperature fabrication approach. The Cu NCs@MOFs core-shell composites show much enhanced reactivity in comparison to the Cu NCs confined in the pore of MOFs, regardless of their very similar intrinsic properties at the atomic level. Moreover, introducing polar groups on the MOF structure can further improve both the catalytic reactivity and selectivity. Mechanistic investigation reveals that the CuI sites located at the interface between Cu NCs and support serve as the active sites and efficiently catalyze CO2 photoreduction. This synergetic effect may pave the way for the design of low-cost and efficient catalysts for CO2 photoreduction into high-value chemical feedstock.

4.
J Am Chem Soc ; 144(34): 15745-15753, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35973046

RESUMO

Metal-organic frameworks (MOFs) assembled from multiple building blocks exhibit greater chemical complexity and superior functionality in practical applications. Herein, we report a new approach based on using prefabricated cavities to design isoreticular multicomponent MOFs from a known parent MOF. We demonstrate this concept with the formation of multicomponent HKUST-1 analogues, using a prefabricated cavity that comprises a cuboctahedral Rh(II) metal-organic polyhedron functionalized with 24 carboxylic acid groups. The cavities are reticulated in three dimensions via Cu(II)-paddlewheel clusters and (functionalized) 1,3,5-benzenetricarboxylate linkers to form three- and four-component HKUST-1 analogues.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35639862

RESUMO

The metal-organic framework MOF-808 contains Zr6O8 nodes with a high density of vacancy sites, which can incorporate carboxylate-containing functional groups to tune chemical reactivity. Although the postsynthetic methods to modify the chemistry of the Zr6O8 nodes in MOFs are well known, tackling these alterations from a structural perspective is still a challenge. We have combined infrared spectroscopy experiments and first-principles calculations to identify the presence of node vacancies accessible for chemical modifications within the MOF-808. We demonstrate the potential of our approach to assess the decoration of MOF-808 nodes with different catechol-benzoate ligands. Furthermore, we have applied advanced synchrotron characterization tools, such as pair distribution function analyses and X-ray absorption spectroscopy, to resolve the atomic structure of single metal sites incorporated into the catechol groups postsynthetically. Finally, we demonstrate the catalytic activity of these MOF-808 materials decorated with single copper sites for 1,3-dipolar cycloadditions.

6.
Sci Rep ; 12(1): 8505, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595765

RESUMO

The doping of zirconium based EHU-30 and EHU-30-NH2 metal-organic frameworks with copper(II) yielded a homogeneous distribution of the dopant with a copper/zirconium ratio of 0.04-0.05. The doping mechanism is analysed by chemical analysis, microstructural analysis and pair distribution function (PDF) analysis of synchrotron total scattering data in order to get deeper insight into the local structure. According to these data, the Cu(II) atoms are assembled within the secondary building unit by a transmetalation reaction, contrarily to UiO-66 series in which the post-synthetic metalation of the MOF takes place through chemical anchorage. The resulting materials doubled the overall performance of the parent compounds for the CO2 electroreduction, while retained stable the performance during continuous transformation reaction.

7.
ACS Appl Mater Interfaces ; 13(45): 54106-54112, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730927

RESUMO

Covalent organic frameworks (COFs) are porous materials formed through condensation reactions of organic molecules via the formation of dynamic covalent bonds. Among COFs, those based on imine and ß-ketoenamine linkages offer an excellent platform for binding metallic species such as copper to design efficient heterogeneous catalysts. In this work, imine- and ß-ketoenamine-based COF materials were modified with catalytic copper sites following a metallation method, which favored the formation of binding amine defects. The obtained copper-metallated COF materials were tested as heterogeneous catalysts for 1,3-dipolar cycloaddition reactions, resulting in high yields and recyclability.

8.
J Am Chem Soc ; 143(48): 20090-20094, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34826220

RESUMO

How molecules approach, bind at, and release from catalytic sites is key to heterogeneous catalysis, including for emerging metal-organic framework (MOF)-based catalysts. We use in situ synchrotron X-ray scattering analysis to evaluate the dominant binding sites for reagent and product molecules in the vicinity of catalytic Ni-oxo clusters in NU-1000 with different surface functionalization under conditions approaching those used in catalysis. The locations of the reagent and product molecules within the pores can be linked to the activity for ethylene hydrogenation. For the most active catalyst, ethylene reagent molecules bind close to the catalytic clusters, but only at temperatures approaching experimentally observed onset of catalysis. The ethane product molecules favor a different binding location suggesting that the product is readily released from the active site. An unusual guest-dependence of the framework negative thermal expansion is documented. We hypothesize that reagent and product binding sites reflect the pathway through the MOF to the active site and can be used to identify key factors that impact the catalytic activity.

9.
Chem Commun (Camb) ; 56(100): 15615-15618, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33290455

RESUMO

Stabilizing catalytic iron-oxo-clusters within nanoporous metal-organic frameworks (MOFs) is a powerful strategy to prepare new active materials for the degradation of toxic chemicals, such as bisphenol A. Herein, we combine pair distribution function analysis of total X-ray scattering data and X-ray absorption spectroscopy, with computational modelling to understand the local structural nature of added redox-active iron-oxo clusters bridging neighbouring zirconia-nodes within MOF-808.

10.
Nanoscale ; 12(29): 15577-15587, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510095

RESUMO

Pair distribution function, PDF, analyses are emerging as a powerful tool to characterize non-ideal metal-organic framework (MOF) materials with compromised ordering. Although originally envisaged as crystalline porous architectures, MOFs can incorporate defects in their structures through either chemistry or mechanical stress, resulting in materials with unpredicted novel properties. Indeed, a wide variety of current non-ideal MOFs have disorder in their structures to some extent, thereby often lacking crystals. Typically, PDF experiments are performed using high-energy synchrotron X-rays or neutrons to achieve a superior high atomic resolution in short times. The PDF technique analyses both Bragg and diffuse scattering signals simultaneously, without being restricted to crystalline materials. This characteristic makes PDF analyses a powerful probe to address the structural characterization of non-ideal MOF materials both at the local and intermediate range scales, including under in situ conditions relevant to MOF synthesis, activation and catalysis.

11.
Angew Chem Int Ed Engl ; 59(31): 13013-13020, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32333630

RESUMO

Layered covalent organic frameworks (2D-COFs), composed of reversible imine linkages and accessible pores, offer versatility for chemical modifications towards the development of catalytic materials. Nitrogen-enriched COFs are good candidates for binding Pd species. Understanding the local structure of reacting Pd sites bonded to the COF pores is key to rationalize interactions between active sites and porous surfaces. By combining advanced synchrotron characterization methods with periodic computational DFT modeling, the precise atomic structure of catalytic Pd sites attached to local defects is resolved within an archetypical imine-linked 2D-COF. This material was synthesized using an in situ method as a gel, under which imine hydrolysis and metalation reactions are coupled. Local defects formed in situ within imine-linked 2D-COF materials are highly reactive towards Pd metalation, resulting in active materials for Suzuki-Miyaura cross-coupling reactions.

12.
J Am Chem Soc ; 142(14): 6638-6648, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32172557

RESUMO

Reticular chemistry has boosted the design of thousands of metal and covalent organic frameworks for unlimited chemical compositions, structures, and sizable porosities. The ability to generate porous materials at will on the basis of geometrical design concepts is responsible for the rapid growth of the field and the increasing number of applications derived. Despite their promising features, the synthesis of targeted homo- and heterometallic titanium-organic frameworks amenable to these principles is relentlessly limited by the high reactivity of this metal in solution that impedes the controlled assembly of titanium molecular clusters. We describe an unprecedented methodology for the synthesis of heterometallic titanium frameworks by metal-exchange reactions of MOF crystals at temperatures below those conventionally used in solvothermal synthesis. The combination of hard (titanium) and soft (calcium) metals in the heterometallic nodes of MUV-10(Ca) enables controlled metal exchange in soft positions for the generation of heterometallic secondary building units (SBUs) with variable nuclearity, controlled by the metal incorporated. The structural information encoded in the newly formed SBUs drives an MOF-to-MOF conversion into bipartite nets compatible with the connectivity of the organic linker originally present in the crystal. Our simulations show that this transformation has a thermodynamic origin and is controlled by the terminations of the (111) surfaces of the crystal. The reaction of MUV-10(Ca) with first-row transition metals permits the production of crystals of MUV-101(Fe,Co,Ni,Zn) and MUV-102(Cu), heterometallic titanium MOFs isostructural with archetypical solids such as MIL-100 and HKUST. In comparison to de novo synthesis, this metal-induced topological transformation provides control over the formation of hierarchical micro-/mesopore structures at different reaction times and enables the formation of heterometallic titanium MOFs not accessible under solvothermal conditions at high temperature, thus opening the door for the isolation of additional titanium heterometallic phases not linked exclusively to trimesate linkers.

13.
J Am Chem Soc ; 142(7): 3540-3547, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31986022

RESUMO

Covalent organic frameworks (COFs) are commonly synthesized under harsh conditions yielding unprocessable powders. Control in their crystallization process and growth has been limited to studies conducted in hazardous organic solvents. Herein, we report a one-pot synthetic method that yields stable aqueous colloidal solutions of sub-20 nm crystalline imine-based COF particles at room temperature and ambient pressure. Additionally, through the combination of experimental and computational studies, we investigated the mechanisms and forces underlying the formation of such imine-based COF colloids in water. Further, we show that our method can be used to process the colloidal solution into 2D and 3D COF shapes as well as to generate a COF ink that can be directly printed onto surfaces. These findings should open new vistas in COF chemistry, enabling new application areas.


Assuntos
Estruturas Metalorgânicas/síntese química , Água/química , Aldeídos/química , Derivados de Benzeno/química , Biomimética/métodos , Coloides/síntese química , Coloides/química , Cristalização , Iminas/síntese química , Iminas/química , Micelas , Tamanho da Partícula
14.
J Am Chem Soc ; 141(30): 11801-11805, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31322871

RESUMO

UiO-66, MOF-808 and NU-1000 metal-organic frameworks exhibit a differentiated reactivity toward [Mg(OMe)2(MeOH)2]4 related to their pore accessibility. Microporous UiO-66 remains unchanged while mesoporous MOF-808 and hierarchical micro/mesoporous NU-1000 materials yield doped systems containing exposed MgZr5O2(OH)6 clusters in the mesoporous cavities. This modification is responsible for a remarkable enhancement of the catalytic activity toward the hydrolytic degradation of P-F and P-S bonds of toxic nerve agents, at room temperature, in unbuffered aqueous solutions.


Assuntos
Magnésio/química , Estruturas Metalorgânicas/química , Agentes Neurotóxicos/química , Zircônio/química , Catálise , Hidrólise , Modelos Moleculares , Oxirredução , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Temperatura
15.
Chem Commun (Camb) ; 55(10): 1382-1385, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30525152

RESUMO

A two-dimensional imine-linked covalent organic framework bearing pyrene has been prepared and exfoliated in water as nanosheets to produce a stable water colloid. As a proof-of-concept, this COF colloid has been used to detect the presence of several organic dyes and polynitro-aromatic derivatives. These results show the high potential of these nanomaterials for applications in chemical sensing of pollutants directly in water.

16.
J Am Chem Soc ; 140(45): 15309-15318, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30352506

RESUMO

Promoters are ubiquitous in industrial heterogeneous catalysts. The wider roles of promoters in accelerating catalysis and/or controlling selectivity are, however, not well understood. A model system has been developed where a heterobimetallic active site comprising an active metal (Rh) and a promoter ion (Ga) is preassembled and delivered onto a metal-organic framework (MOF) support, NU-1000. The Rh-Ga sites in NU-1000 selectively catalyze the hydrogenation of acyclic alkynes to E-alkenes. The overall stereoselectivity is complementary to the well-known Lindlar's catalyst, which generates Z-alkenes. The role of the Ga in promoting this unusual selectivity is evidenced by the lack of semihydrogenation selectivity when Ga is absent and only Rh is present in the active site.

17.
J Am Chem Soc ; 140(40): 12922-12929, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216717

RESUMO

Schiff-condensation reactions carried out between 1,6-diaminopyrene (DAP) and the tritopical 1,3,5 benzenetricarbaldehyde (BTCA) or 2,4,6-triformylphloroglucinol (TP) ligands give rise to the formation of two-dimensional imine-based covalent-organic frameworks (COFs), named IMDEA-COF-1 and -2, respectively. These materials show dramatic layer-packing-driven fluorescence in solid state arising from the three-dimensional arrangement of the pyrene units among layers. Layer stacking within these 2D-COF materials to give either eclipsed or staggered conformations can be controlled, at an atomic level through chemical design of the building blocks used in their synthesis. Theoretical calculations have been used to rationalize the different preferential packing between both COFs. IMDEA-COF-1 shows green emission with absolute photoluminescence quantum yield of 3.5% in solid state. This material represents the first example of imine-linked 2D-COF showing emission in solid state.

18.
ACS Appl Mater Interfaces ; 10(36): 30532-30540, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113802

RESUMO

A representative mesoporous metal-organic-framework (MOF) material, NU-1000, has been rendered electronically conductive via a robust inorganic approach that permits retention of MOF crystallinity and porosity. The approach is based on condensed-phase grafting of molecular tin species onto the MOF nodes via irreversible reaction with hydroxyl and aqua ligands presented at the node surface, a self-limiting process termed solvothermal installation (of metal ions) in MOFs (SIM, a solution-phase analog of atomic layer deposition in MOFs). Treatment of the modified MOF with aerated steam at 120 °C converts the grafted tin molecules to tetratin(IV)oxy clusters, with the clusters being sited between insulating pairs of zirconia-like nodes (the zirconium component being key to endowing the parent material with requisite chemical and thermal stability). By introducing new O-H presenting ligands on the modified-MOF node, the high-temperature steam step additionally serves to reset the material to reactive form, thus enabling a second self-limiting tin-grafting step to be run (and after further steam treatment, enabling a third). Difference-envelop-density (DED) analyses of synchrotron-derived X-ray scattering data, with and without installed tin species, show that the clusters formed after one cycle are spatially isolated, but that repetitive SIM cycling adds metal and oxygen ions in a way that enshrouds nodes, links clusters, and yields continuous one-dimensional strands of oxy-tin(IV), oriented exclusively along the c axis of the MOF. Two-probe conductivity measurements show that the parent MOF and the version containing isolated oxy-tin(IV) clusters are electrically insulating, but that the versions featuring continuous strands show an electrical conductivity of 1.8 × 10-7 S/cm after three Sn-SIM cycles. When combined with interdigitated microelectrodes, the solvent-free and conductive-glass-modified material (three Sn-SIM cycles) displays a substantial and persistent increase in electrical conductivity during exposure to 5% H2, indicating a role for dissociated H2 as an electronic dopant. The increase can be repetitively reversed by alternating H2 with air, illustrating the ability of the conductive MOF to function as a resistive sensor for H2 and suggesting further potential applications that may capitalize on the combination of high volumetric surface area, high mesoporosity, high chemical and thermal stability, and significant electrical conductivity.

19.
ACS Appl Mater Interfaces ; 10(17): 15073-15078, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29671320

RESUMO

Direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal-organic framework (MOF) can be rationally designed using postsynthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition toward hitherto ill-favored grafting sites orientated toward NU-1000s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidative dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h-1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.

20.
Inorg Chem ; 57(5): 2782-2790, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29461822

RESUMO

Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-postmetalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...